
QProperty Review
Andreas Buhr

January 12, 2021

12 January 2021 © The Qt Company2

Agenda

• Intro by Andreas
• Some words about naming
• How dependency tracking works
• Problems encountered while porting to bindable properties
• Proposals for improvement

• Comments by QtCore property porting team (Ivan, Sona, Timur, Eddy)
• Discussion how to proceed

Naming Things1

› Situation:
› QProperty X depends on QProperty Y
› QProperty X is bound to QProperty Y

› Proposal:
› Y is a upstream property of X
› X is a downstream property of Y

› Alternatives:
› dependency/dependent
› leader/follower

12 January 2021 © The Qt Company4

Proposal: talking about upstream/downstream

How Dependency Tracking Works2

› The connection between two QPropertys is stored in a QPropertyObserver in the
QPropertyBindingPrivate

› Each QProperty, when evaluating, stores in a thread-global variable that it is
evaluating.

› Each QProperty with a binding, when being read, reads this thread-global variable
and (if it is set) establishes a connection.

12 January 2021 © The Qt Company6

How Dependency Tracking Works

Problems Encountered3

› https://bugreports.qt.io/browse/QTBUG-89890

› Only works correctly if every code path in setter
writes underlying object

› Setter might remove binding
› Cannot do it if underlying QObjectCompatProperty is not

written

12 January 2021 © The Qt Company8

Q_OBJECT_COMPAT_PROPERTY
Buggy code:

https://bugreports.qt.io/browse/QTBUG-89890

› https://bugreports.qt.io/browse/QTBUG-89653

› Only works correctly if every code path in getter
reads underlying object

› Read triggers dependency handling
› Cannot do it if underlying QObjectComputedProperty is not

read

12 January 2021 © The Qt Company9

Q_OBJECT_COMPUTED_PROPERTY
Buggy code:

Some concerns:

› One can easily bind to something which is not capable of dependency handling
https://bugreports.qt.io/browse/QTBUG-89518

› User has responsibility to make sure a and b outlive c (or am I mistaken?)
https://bugreports.qt.io/browse/QTBUG-89848

12 January 2021 © The Qt Company10

Formulating a binding

https://bugreports.qt.io/browse/QTBUG-89518
https://bugreports.qt.io/browse/QTBUG-89848

Proposals for Improvement5

› Remove all "magic" getters and setters. Only value() / setValue().
› In the containing class:

› Getter must not do anything else than read from underlying object:
"return myproperty.value();"

› Setter must not do anything else than write to underlying object:
"myproperty.setValue(newval);"

› Old setter is turned into a filter function, given to Q_OBJECT_COMPAT_PROPERTY, and only called
by that.

12 January 2021 © The Qt Company12

Proposal for QObjectCompatProperty

› Remove "magic" getters. Only value().
› In the containing class:

› Getter must not do anything else than read from underlying object:
"return myproperty.value();"

› Old getter is turned into a private computation function, given to
Q_OBJECT_COMPUTED_PROPERTY, and only called by that.

› Clearly state in the documentation:
It is the programmer's responsibility to call markDirty() whenever it might have
changed.

12 January 2021 © The Qt Company13

Proposal for QObjectComputedProperty

› No "magic" getters and setters. Only value() / setValue().
› In the containing class:

› Getter must not do anything else than read from underlying object:
"return myproperty.value();"

› Setter must not do anything else than write to underlying object:
"myproperty.setValue(newval);"

› A function to compute the value is given to Q_OBJECT_CUSTOM_PROPERTY.
› A callback to set the value is given to Q_OBJECT_CUSTOM_PROPERTY

› Clearly state in the documentation:
It is the programmer's responsibility to call markDirty() whenever it might have
changed.

12 January 2021 © The Qt Company14

Proposal for new QObjectCustomProperty

12 January 2021 © The Qt Company15

Proposal on how to formulate a binding
Existing:

Proposed:

Advantages:

› Visible dependency handling
› Much faster evaluation
› Less memory requirement

Disadvantages:

› Breaks existing code
› No dynamic change of

dependencies

12 January 2021 © The Qt Company16

Measuring binding evaluation time

upstream Existing ns Proposed ns factor
1 111 28 4.0
2 253 95 2.7
3 461 141 3.3
4 587 188 3.1
8 1141 419 2.7

16 2265 801 2.8

12 January 2021 © The Qt Company17

Measuring binding memory usage

upstream Existing bytes Proposed bytes factor
1 208 176 1.18
2 224 192 1.17
3 224 228 0.98
4 240 242 0.99
8 416 306 1.36

16 768 440 1.75

