
LEARN C++
Skill up with our free tutorials

28.5 — Stream states and input validation
ALEX SEPTEMBER 9, 2024

Stream states

The ios_base class contains several state

flags that are used to signal various

conditions that may occur when using

streams:

Flag Meaning

goodbit Everything is okay

badbit Some kind of fatal error

occurred (e.g. the program

tried to read past the end of

a file)

eofbit The stream has reached the

end of a file

failbit A non-fatal error occurred

(e.g. the user entered letters

when the program was

expecting an integer)

Although these flags live in ios_base, because ios is derived from ios_base and ios takes less

typing than ios_base, they are generally accessed through ios (e.g. as std::ios::failbit).

ios also provides a number of member functions in order to conveniently access these states:

 1 

11/28/24, 12:23 PM 28.5 — Stream states and input validation – Learn C++

https://www.learncpp.com/cpp-tutorial/stream-states-and-input-validation/ 1/12

https://www.learncpp.com/
https://www.learncpp.com/
https://www.learncpp.com/
https://www.learncpp.com/author/Alex/

Member function Meaning

good() Returns true if the goodbit is set (the stream is ok)

bad() Returns true if the badbit is set (a fatal error occurred)

eof() Returns true if the eofbit is set (the stream is at the end of a file)

fail() Returns true if the failbit is set (a non-fatal error occurred)

clear() Clears all flags and restores the stream to the goodbit state

clear(state) Clears all flags and sets the state flag passed in

rdstate() Returns the currently set flags

setstate(state) Sets the state flag passed in

The most commonly dealt with bit is the failbit, which is set when the user enters invalid input.

For example, consider the following program:

Note that this program is expecting the user to enter an integer. However, if the user enters

non-numeric data, such as “Alex”, cin will be unable to extract anything to age, and the failbit will

be set.

If an error occurs and a stream is set to anything other than goodbit, further stream operations

on that stream will be ignored. This condition can be cleared by calling the clear() function.

Input validation

Input validation is the process of checking whether the user input meets some set of criteria.

Input validation can generally be broken down into two types: string and numeric.

std::cout << "Enter your age: ";
int age {};
std::cin >> age;

1
2
3

···

11/28/24, 12:23 PM 28.5 — Stream states and input validation – Learn C++

https://www.learncpp.com/cpp-tutorial/stream-states-and-input-validation/ 2/12

With string validation, we accept all user input as a string, and then accept or reject that string

depending on whether it is formatted appropriately. For example, if we ask the user to enter a

telephone number, we may want to ensure the data they enter has ten digits. In most languages

(especially scripting languages like Perl and PHP), this is done via regular expressions. The C++

standard library has a regular expression library (https://en.cppreference.com/w/cpp/regex) as well.

Because regular expressions are slow compared to manual string validation, they should only be

used if performance (compile-time and run-time) is of no concern or manual validation is too

cumbersome.

With numerical validation, we are typically concerned with making sure the number the user

enters is within a particular range (e.g. between 0 and 20). However, unlike with string validation,

it’s possible for the user to enter things that aren’t numbers at all -- and we need to handle these

cases too.

To help us out, C++ provides a number of useful functions that we can use to determine whether

specific characters are numbers or letters. The following functions live in the cctype header:

Function Meaning

std::isalnum(int) Returns non-zero if the parameter is a letter or a digit

std::isalpha(int) Returns non-zero if the parameter is a letter

std::iscntrl(int) Returns non-zero if the parameter is a control character

std::isdigit(int) Returns non-zero if the parameter is a digit

std::isgraph(int) Returns non-zero if the parameter is printable character that is not

whitespace

std::isprint(int) Returns non-zero if the parameter is printable character (including

whitespace)

std::ispunct(int) Returns non-zero if the parameter is neither alphanumeric nor whitespace

std::isspace(int) Returns non-zero if the parameter is whitespace

std::isxdigit(int) Returns non-zero if the parameter is a hexadecimal digit (0-9, a-f, A-F)

3

···

11/28/24, 12:23 PM 28.5 — Stream states and input validation – Learn C++

https://www.learncpp.com/cpp-tutorial/stream-states-and-input-validation/ 3/12

https://en.cppreference.com/w/cpp/regex

String validation

Let’s do a simple case of string validation by asking the user to enter their name. Our validation

criteria will be that the user enters only alphabetic characters or spaces. If anything else is

encountered, the input will be rejected.

When it comes to variable length inputs, the best way to validate strings (besides using a regular

expression library) is to step through each character of the string and ensure it meets the

validation criteria. That’s exactly what we’ll do here, or better, that’s what std::all_of does for

us.

Note that this code isn’t perfect: the user could say their name was “asf w jweo s di we ao” or

some other bit of gibberish, or even worse, just a bunch of spaces. We could address this

somewhat by refining our validation criteria to only accept strings that contain at least one

character and at most one space.

Author’s note

Reader “Waldo” provides a C++20 solution (using std::ranges) that addresses these

shortcomings here (#comment-571052)

Now let’s take a look at another example where we are going to ask the user to enter their

phone number. Unlike a user’s name, which is variable-length and where the validation criteria

#include <algorithm> // std::all_of
#include <cctype> // std::isalpha, std::isspace
#include <iostream>
#include <ranges>
#include <string>
#include <string_view>

bool isValidName(std::string_view name)
{
 return std::ranges::all_of(name, [](char ch) {
 return std::isalpha(ch) || std::isspace(ch);
 });

 // Before C++20, without ranges
 // return std::all_of(name.begin(), name.end(), [](char ch) {
 // return std::isalpha(ch) || std::isspace(ch);
 // });
}

int main()
{
 std::string name{};

 do
 {
 std::cout << "Enter your name: ";
 std::getline(std::cin, name); // get the entire line, including spaces
 } while (!isValidName(name));

 std::cout << "Hello " << name << "!\n";
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

4

11/28/24, 12:23 PM 28.5 — Stream states and input validation – Learn C++

https://www.learncpp.com/cpp-tutorial/stream-states-and-input-validation/ 4/12

are the same for every character, a phone number is a fixed length but the validation criteria

differ depending on the position of the character. Consequently, we are going to take a different

approach to validating our phone number input. In this case, we’re going to write a function that

will check the user’s input against a predetermined template to see whether it matches. The

template will work as follows:

A # will match any digit in the user input.

A @ will match any alphabetic character in the user input.

A _ will match any whitespace.

A ? will match anything.

Otherwise, the characters in the user input and the template must match exactly.

So, if we ask the function to match the template “(###) ###-####”, that means we expect the

user to enter a ‘(‘ character, three numbers, a ‘)’ character, a space, three numbers, a dash, and

four more numbers. If any of these things doesn’t match, the input will be rejected.

Here is the code:

···

11/28/24, 12:23 PM 28.5 — Stream states and input validation – Learn C++

https://www.learncpp.com/cpp-tutorial/stream-states-and-input-validation/ 5/12

#include <algorithm> // std::equal
#include <cctype> // std::isdigit, std::isspace, std::isalpha
#include <iostream>
#include <map>
#include <ranges>
#include <string>
#include <string_view>

bool inputMatches(std::string_view input, std::string_view pattern)
{
 if (input.length() != pattern.length())
 {
 return false;
 }

 // This table defines all special symbols that can match a range of user
input
 // Each symbol is mapped to a function that determines whether the input
is valid for that symbol
 static const std::map<char, int (*)(int)> validators{
 { '#', &std::isdigit },
 { '_', &std::isspace },
 { '@', &std::isalpha },
 { '?', [](int) { return 1; } }
 };

 // Before C++20, use
 // return std::equal(input.begin(), input.end(), pattern.begin(), []
(char ch, char mask) -> bool {
 // ...

 return std::ranges::equal(input, pattern, [](char ch, char mask) -> bool
{
 auto found{ validators.find(mask) };

 if (found != validators.end())
 {
 // The pattern's current element was found in the validators.
Call the
 // corresponding function.
 return (*found->second)(ch);
 }

 // The pattern's current element was not found in the validators.
The
 // characters have to be an exact match.
 return ch == mask;
 }); // end of lambda
}

int main()
{
 std::string phoneNumber{};

 do
 {
 std::cout << "Enter a phone number (###) ###-####: ";
 std::getline(std::cin, phoneNumber);
 } while (!inputMatches(phoneNumber, "(###) ###-####"));

 std::cout << "You entered: " << phoneNumber << '\n';
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

11/28/24, 12:23 PM 28.5 — Stream states and input validation – Learn C++

https://www.learncpp.com/cpp-tutorial/stream-states-and-input-validation/ 6/12

Using this function, we can force the user to match our specific format exactly. However, this

function is still subject to several constraints: if #, @, _, and ? are valid characters in the user

input, this function won’t work, because those symbols have been given special meanings. Also,

unlike with regular expressions, there is no template symbol that means “a variable number of

characters can be entered”. Thus, such a template could not be used to ensure the user enters

two words separated by a whitespace, because it can not handle the fact that the words are of

variable lengths. For such problems, the non-template approach is generally more appropriate.

Numeric validation

When dealing with numeric input, the obvious way to proceed is to use the extraction operator

to extract input to a numeric type. By checking the failbit, we can then tell whether the user

entered a number or not.

Let’s try this approach:

If the user enters an integer, the extraction will succeed. std::cin.fail() will evaluate to false,

skipping the conditional, and (assuming the user entered a positive number), we will hit the

break statement, exiting the loop.

If the user instead enters input starting with a letter, the extraction will fail. std::cin.fail() will

evaluate to true, and we will go into the conditional. At the end of the conditional block, we will

hit the continue statement, which will jump back to the top of the while loop, and the user will be

asked to enter input again.

#include <iostream>
#include <limits>

int main()
{
 int age{};

 while (true)
 {
 std::cout << "Enter your age: ";
 std::cin >> age;

 if (std::cin.fail()) // no extraction took place
 {
 std::cin.clear(); // reset the state bits back to goodbit so we
can use ignore()
 std::cin.ignore(std::numeric_limits<std::streamsize>::max(),
'\n'); // clear out the bad input from the stream
 continue; // try again
 }

 if (age <= 0) // make sure age is positive
 continue;

 break;
 }

 std::cout << "You entered: " << age << '\n';
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

11/28/24, 12:23 PM 28.5 — Stream states and input validation – Learn C++

https://www.learncpp.com/cpp-tutorial/stream-states-and-input-validation/ 7/12

However, there’s one more case we haven’t tested for, and that’s when the user enters a string

that starts with numbers but then contains letters (e.g. “34abcd56”). In this case, the starting

numbers (34) will be extracted into age, the remainder of the string (“abcd56”) will be left in the

input stream, and the failbit will NOT be set. This causes two potential problems:

1. If you want this to be valid input, you now have garbage in your stream.

2. If you don’t want this to be valid input, it is not rejected (and you have garbage in your

stream).

Let’s fix the first problem. This is easy:

If you don’t want such input to be valid, we’ll have to do a little extra work. Fortunately, the

previous solution gets us half way there. We can use the gcount() function to determine how

many characters were ignored. If our input was valid, gcount() should return 1 (the newline

character that was discarded). If it returns more than 1, the user entered something that wasn’t

extracted properly, and we should ask them for new input. Here’s an example of this:

···

#include <iostream>
#include <limits>

int main()
{
 int age{};

 while (true)
 {
 std::cout << "Enter your age: ";
 std::cin >> age;

 if (std::cin.fail()) // no extraction took place
 {
 std::cin.clear(); // reset the state bits back to goodbit so we
can use ignore()
 std::cin.ignore(std::numeric_limits<std::streamsize>::max(),
'\n'); // clear out the bad input from the stream
 continue; // try again
 }

 std::cin.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
// clear out any additional input from the stream

 if (age <= 0) // make sure age is positive
 continue;

 break;
 }

 std::cout << "You entered: " << age << '\n';
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

11/28/24, 12:23 PM 28.5 — Stream states and input validation – Learn C++

https://www.learncpp.com/cpp-tutorial/stream-states-and-input-validation/ 8/12

Numeric validation as a string

The above example was quite a bit of work simply to get a simple value! Another way to process

numeric input is to read it in as a string, then try to convert it to a numeric type. The following

program makes use of that methodology:

#include <iostream>
#include <limits>

int main()
{
 int age{};

 while (true)
 {
 std::cout << "Enter your age: ";
 std::cin >> age;

 if (std::cin.fail()) // no extraction took place
 {
 std::cin.clear(); // reset the state bits back to goodbit so we
can use ignore()
 std::cin.ignore(std::numeric_limits<std::streamsize>::max(),
'\n'); // clear out the bad input from the stream
 continue; // try again
 }

 std::cin.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
// clear out any additional input from the stream
 if (std::cin.gcount() > 1) // if we cleared out more than one
additional character
 {
 continue; // we'll consider this input to be invalid
 }

 if (age <= 0) // make sure age is positive
 {
 continue;
 }

 break;
 }

 std::cout << "You entered: " << age << '\n';
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

11/28/24, 12:23 PM 28.5 — Stream states and input validation – Learn C++

https://www.learncpp.com/cpp-tutorial/stream-states-and-input-validation/ 9/12

#include <charconv> // std::from_chars
#include <iostream>
#include <limits>
#include <optional>
#include <string>
#include <string_view>

// std::optional<int> returns either an int or nothing
std::optional<int> extractAge(std::string_view age)
{
 int result{};
 const auto end{ age.data() + age.length() }; // get end iterator of
underlying C-style string

 // Try to parse an int from age
 // If we got an error of some kind...
 if (std::from_chars(age.data(), end, result).ec != std::errc{})
 {
 return {}; // return nothing
 }

 if (result <= 0) // make sure age is positive
 {
 return {}; // return nothing
 }

 return result; // return an int value
}

int main()
{
 int age{};

 while (true)
 {
 std::cout << "Enter your age: ";
 std::string strAge{};

 // Try to get a line of input
 if (!std::getline(std::cin >> std::ws, strAge))
 {
 // If we failed, clean up and try again
 std::cin.clear();
 std::cin.ignore(std::numeric_limits<std::streamsize>::max(),
'\n');
 continue;
 }

 // Try to extract the age
 auto extracted{ extractAge(strAge) };

 // If we failed, try again
 if (!extracted)
 continue;

 age = *extracted; // get the value
 break;
 }

 std::cout << "You entered: " << age << '\n';
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

11/28/24, 12:23 PM 28.5 — Stream states and input validation – Learn C++

https://www.learncpp.com/cpp-tutorial/stream-states-and-input-validation/ 10/12

Whether this approach is more or less work than straight numeric extraction depends on your

validation parameters and restrictions.

As you can see, doing input validation in C++ is a lot of work. Fortunately, many such tasks (e.g.

doing numeric validation as a string) can be easily turned into functions that can be reused in a

wide variety of situations.

 Next lesson
28.6 Basic file I/O

 Back to table of contents

 Previous lesson
28.4 Stream classes for strings

5

6

7

···

8

Leave a comment...

B U URL INLINE CODE C++ CODE BLOCK HELP!

11/28/24, 12:23 PM 28.5 — Stream states and input validation – Learn C++

https://www.learncpp.com/cpp-tutorial/stream-states-and-input-validation/ 11/12

https://www.learncpp.com/cpp-tutorial/basic-file-io/
https://www.learncpp.com/cpp-tutorial/basic-file-io/
https://www.learncpp.com/cpp-tutorial/basic-file-io/
https://www.learncpp.com/cpp-tutorial/basic-file-io/
https://www.learncpp.com/cpp-tutorial/basic-file-io/
https://www.learncpp.com/cpp-tutorial/basic-file-io/
https://www.learncpp.com/cpp-tutorial/basic-file-io/
https://www.learncpp.com/cpp-tutorial/basic-file-io/
https://www.learncpp.com/cpp-tutorial/basic-file-io/
https://www.learncpp.com/cpp-tutorial/basic-file-io/
https://www.learncpp.com/cpp-tutorial/basic-file-io/
https://www.learncpp.com/
https://www.learncpp.com/
https://www.learncpp.com/
https://www.learncpp.com/
https://www.learncpp.com/
https://www.learncpp.com/
https://www.learncpp.com/
https://www.learncpp.com/cpp-tutorial/stream-classes-for-strings/
https://www.learncpp.com/cpp-tutorial/stream-classes-for-strings/
https://www.learncpp.com/cpp-tutorial/stream-classes-for-strings/
https://www.learncpp.com/cpp-tutorial/stream-classes-for-strings/
https://www.learncpp.com/cpp-tutorial/stream-classes-for-strings/
https://www.learncpp.com/cpp-tutorial/stream-classes-for-strings/
https://www.learncpp.com/cpp-tutorial/stream-classes-for-strings/
https://www.learncpp.com/cpp-tutorial/stream-classes-for-strings/
https://www.learncpp.com/cpp-tutorial/stream-classes-for-strings/
https://www.learncpp.com/cpp-tutorial/stream-classes-for-strings/
https://www.learncpp.com/cpp-tutorial/stream-classes-for-strings/

Links
1. https://www.learncpp.com/author/Alex/

2. https://www.humix.com/video/-PJCQh4jXO2

3. https://en.cppreference.com/w/cpp/regex

4. https://www.learncpp.com/cpp-tutorial/stream-states-and-input-validation/#comment-571052

5. https://www.learncpp.com/cpp-tutorial/basic-file-io/

6. https://www.learncpp.com/

7. https://www.learncpp.com/cpp-tutorial/stream-classes-for-strings/

8. https://www.learncpp.com/stream-states-and-input-validation/

9. https://www.learncpp.com/wordpress/tiga-and-wordpress-25/

10. https://gravatar.com/

11. https://g.ezoic.net/privacy/learncpp.com

Find a mistake? Leave a comment
above!

Avatars from https://gravatar.com/
are connected to your provided email
address.

Notify me about replies:

POST COMMENT

112 COMMENTS

Name*

Email* 





 10



Newest 

11/28/24, 12:23 PM 28.5 — Stream states and input validation – Learn C++

https://www.learncpp.com/cpp-tutorial/stream-states-and-input-validation/ 12/12

https://gravatar.com/

