Functional Safety with Qt

and
Qt Safe Renderer

Kimmo Ollila

Presentation Outline

>What is Functional Safety?

>»Safety Standards

>Creating a Certified System with Qt
>Qt Safe Renderer

>Summary

2 10/15/18 © The Qt Company

What is Functional Safety?

> Protect people from getting
hurt

> Active systems: detect &
prevent

> Determined considering the
system as a whole

> Measured by Safety Integrity
Level (SIL, ASIL in Automotive)

> Required level determined
based on likelihood of injury or
death

3 10/15/18 © The Qt Company

Examples of Safety Standards

> Main standard of functional

safety is IEC 61508 e
> Examples of industry specific
standards EN 50128
> Automotive: 1SO 26262 appiicatons

> Medical Device Software: IEC 62304
> Railway software: EN 50128

> Avionics software: DO-178B IEﬁe%.?faoﬁ

> Machine control: IEC 62061 DEVIERE

> Agricultural machines: ISO 25119 el
> Nuclear: IEC 61513 Process

Industry

4 10/15/18 © The Qt Company

ISO 26262
Automotive

IEC 62061
Machinery

IEC 50156
Furnaces

Creating a Certified System
with Qt

10/15/18 © The Qt Company

Creating a Certified System with Qt

> Complete system needs to be certified
> Using pre-certified tools and components helps achieve certification for new system
> Separation of safety critical functionality from other functionality

With separation, Qt can be used in a system
requiring certification without changing the
Qt libraries.

Safety critical Ul rendered with Qt Safe
Renderer.

> Suitable means and level of separation depending upon the required SIL/ASIL level
> Qt Safe Renderer as safety critical process, Main Ul with Qt Quick as regular process

6 10/15/18 © The Qt Company

Certified RTOS for Separation

> Real-Time Operating System (RTQOS) to
separate Safety Critical and other processes

Safe Ul

Main Ul (Qt Quick)

> Certified RTOS and toolchain saves time and

effort in system level certification 5
t
Safe
Renderer

> Certification requirements applied for the
safety critical parts

> Ul elements can be separated using HW layers
or by the RTOS compositor

> In some designs, a safety critical Ul may not RTOS (Safety Critical)
be necessary at all, or can be arranged using a
separate display or a warning light Electronics

7 10/15/18 © The Qt Company

Hypervisor for Separation

> A Hypervisor to run separate OS for safety
critical and other functionality

> Safety critical functionality on a certified RTOS

> Other functionality for example on embedded
Linux

> Operating systems can share resources and
data as long as the separation guarantees
integrity of the safety critical software

> Safety critical functionality can be assigned to
a dedicated CPU core

> Shared resources controlled by hypervisor
(e.g. GPU)

8 10/15/18 © The Qt Company

Main Ul (Qt Quick) Safe Ul

Qt
Safe
Renderer

RTOS
(SC)

OS (e.qg. Linux)

Type 1 Hypervisor (SC)

Electronics

y

Hypervisor for Separation - with Multiple Domains

> A Hypervisor to separate OS domains, as well as
" . . Ul - Ul - Safe Ul
safety critical and other functionality
> Safety critical functionality on a certified RTOS ot
> Other functionality for example on embedded Safe
Linux Renderer
> Two different regular Qt Uls + Safety Critical Ul
> Ul - Arunning on a regular OS, e.qg. Linux RTOS (5C)
> Ul - B running on a safety critical RTOS
> Qt Safe Renderer for safety critical Ul functionality Type 1 Hypervisor (5C)

> Otherwise similar as previously shown

hypervisor architecture Electronics

9 10/15/18 © The Qt Company

y

Separate Processors

|
|
> Separate processors or a single SoC with separate Main Ul (Qt Quick) | Safe Ul
CPUs to run different OS for safety critical and other :
functionality :
> Similar to hypervisor, but separation done directly ot : S(;Fe
with physical hardware ' Renderer
|
> Safety critical functionality can run on a simple I
|
RTOS :
OS (e.g. Linux) } "TOS
> A microcontroller CPU may be enough for safety l (5C)

critical functionality

. _ _ Electronics
> Other functionality can run for example on Linux OS

> Operating systems can share resources and data as CPU A CPU B
long as the separation guarantees integrity of the

safety critical software

10 10/15/18 © The Qt Company

Qt Safe Renderer

> Certification for: IEC 61508, 1SO 26262, EN 50128 and I1SO 62304

y

Qt Safe Renderer — Product Overview

. Application design Design ouput with non-safe Qt Safe Layout Application in target
1. Qt Safe Renderer SW consists of and safe image parts Toolinput/output environment
> Qt Creator plug-in Qt Creator P % —
! . 0S I
- 50 7000 £ Al o x| Lo
> Runtime component icon library ‘. | Certfied Type 1 Hypervisor |

Rich Ul ASIL-B

Qt Safe
Renderer

2. Common tool chain for designing both

safe and non-safe Ul Safety critical Ul

Ul design

Software Build ASIL-D RTOS

3. Safety Manual and Certification Artifacts @ ||

12 10/15/18 © The Qt Company |

Qt Safe Renderer
- Overview

> Two certified components:
> Development tooling with visual designer
> Rendering component for safety critical Ul
> Integration to RTOS:
> QNX 7.0 or later
> INTEGRITY 11.4.4 or later

> Examples of supported HW:

> NXP i.MX6, Renesas R-Car H3, Qualcomm
Snapdragon 820, NVIDIA Tegra X1, ...

13 10/15/18 © The Qt Company

Qt Safe Renderer Tooling -
Convenience for Safety Critical Ul Creation

> Easy to define safety critical parts with Qt

Ul design tools

> Flexibility in Ul design without need to
modify safety critical SW components

> Integration to Qt Quick Designer visual Ul
creation tooling in Qt Creator IDE
> Drag and drop safety critical items to Ul

> Full set of ISO standard icons included . j.

I [5rake Faiture; brake system malF...

> No code changes needed due to new Ul B Howsolti
design B
> Run safety critical Ul in host during g —
development and deploy to target - B '

hardware from Creator IDE

14 10/15/18 © The Qt Company

Three “Safe” QML Items

Safelmage { SafePicture { SafeText {
id: safelmagel id: iconCoolant Id: safeText
objectName: "safelmagel” objectName: "iconCoolant" X: 256
source: "indicatorl.png" width: 30 y: 8
width: 64 height: 30 text: "Safe text.."
height: 64 color: "#e41e25" font.pointSize: 12
X: 321 source: "grc:/iso- }
y: 123 icons/iso_grs 7000 4 2426.d

) at”

}

Certified Separation of Safety Critical Ul

Rich Ul

Safety critical Ul

Ul design
Software Build

Cluster Ul ASIL-B
Tell-tales
Qt Qt Safe
Renderer
ASIL-D RTOS

> Complete Ul designed with Qt QML and tooling, including the Safety critical Ul
> Tooling automatically separates the Safety critical Ul parts from the other Ul

> Safety critical Ul rendered by Qt Safe Renderer

16 10/15/18 © The Qt Company

Qt Safe Renderer Runtime -
Renderer for Safety Critical Ul

> Rendering of safety critical Ul by
Qt Safe Renderer

> Bitmaps
> Text baked into bitmaps
> Fully MISRA C++ 2008 compliant

> Safe Ul created with tooling - no
changes to safety critical code

> Independent from Main Ul

> Can react to Main Ul failures and
restart Main Ul

Qt Safe Renderer - Runtime Architecture

> Qt Safe Renderer runs as a safety

critical process
> No dependency to Main Ul
> Process separation by RTOS

> Safety critical Ul drawn to a separate
(topmost) HW graphics layer
> Other processes can not overdraw it

> Qt Safe Renderer listens to heartbeat
from Main Ul and controls Main Ul

> Ul configuration information generated

with build-time tooling

> No changes to safety critical source code due
to changes in Ul design

18 10/15/18 © The Qt Company

Safe
Renderer

Qt

Ul Parameters

RTOS (Safety Critical)

Electronics

Display

As an example, depends the system
canpus

Applicatinn\

P : SystemEventHandler
System specific implementation ?@ Y

QtSafeRenderer\ !

@ QSafeRenderer @QSafeLaynutReader

@QSafeBitmapF{eader

. : FrameBufferAbstraction
System specific implementation 5>©

19 10/15/18 © The Qt Company

Qt Safe Renderer - Leveraging the Graphics HW
Layers

Non safety critical graphics plane (2™ layer)

Safety critical graphics plane
>

.A Ctuster ul | ASIL-B Top layer
i Tell-tales
‘ Qt Safe
ASIL-D RTOS |

20 10/15/18 © The Qt Company

Qt Safe Renderer - Typical Operation

> Communications between Qt
Safe Renderer and Main Ul
minimized
> No dependency to each other

> Qt Safe Renderer can control Main
Ul

> Qt Safe Renderer draws pre-
defined bitmaps to screen

based on system events

> Fully independent operation even
in case of failure in Main Ul

21 10/15/18 © The Qt Company

SystemBEventlListener EventHandler StateManager QSafeRenderer RasterWwindow
I I I 1 I
Fault start)/ |
' faultStart(state) I
: faultStart(state) > | |
E drawBitmap(state) > E
' updatewindow() >
Fault end) :
' faultEnd(state)
 faultEnd(state)y |
[- |
| clearBit tate)
| clearBi maplstate) 5!
! updatewindow() 5!
]]] I]
SystemBEventListener EventHandler StateManager QSafeRenderer RasterWwindow

Qt Safe Renderer - Main Ul Recovery

> Qt Safe Renderer can listen to a heartbeat from Main Ul
> In case of Main Ul failure Qt Safe Renderer can restart the Main Ul

Mainll ProcessWatcher EventHandler StateManager QSafeRenderer RasterWindow

alt / [successfull casel
' heartBeat() _ !
L=

E heartBeat() .

[Heartbeat timeout] | |
| faultstart(MainUIRecovery) }:

| restartMainuli()

| faultStart(MainUIRecovery) }:
' drawBitmap(MainUIRecovery) > Shows textual note that MainUl is in recovery state B]
i i I
| updatewind \
:up atewindow() >
)
Mainl ProcessWatcher EventHandler StateManager QsafeRenderer RasterWindow

22 10/15/18 © The Qt Company

y

Summary

1111111111

Summary

> Objective of Functional Safety: avoid unacceptable risk of injury or damage to the
health of people

> Multiple industry specific standards and local legislation set the framework

> Complete final product is certified
> Use Qt Safe Renderer for safety critical Ul
> Using pre-certified RTOS and hypervisor is beneficial

> Qt is well suited as Ul and application technology to create a certified system
> Safety critical functionality needs to be adequately separated

> Certified systems for multiple different industries have been created with Qt
> Qt Safe Renderer provides certified easy-to-use tooling and renderer

> Certification of Qt Safe Renderer: IEC 61508, ISO 26262, EN 50128 and ISO 62304

24 10/15/18 © The Qt Company

y

Thank You

kimmo.ollila@qt.io

11111111111111111111111

	Slide 1
	Presentation Outline
	What is Functional Safety?
	Examples of Safety Standards
	Slide 5
	Creating a Certified System with Qt
	Certified RTOS for Separation
	Hypervisor for Separation
	Hypervisor for Separation – with Multiple Domains
	Separate Processors
	Slide 11
	Qt Safe Renderer – Product Overview
	Qt Safe Renderer – Overview
	Slide 14
	Three “Safe” QML Items
	Certified Separation of Safety Critical UI
	Qt Safe Renderer Runtime – Renderer for Safety Critical UI
	Qt Safe Renderer – Runtime Architecture
	Slide 19
	Qt Safe Renderer – Leveraging the Graphics HW Layers
	Qt Safe Renderer – Typical Operation
	Qt Safe Renderer – Main UI Recovery
	Slide 23
	Summary
	Slide 25

