
Functional Safety with Qt
and
Qt Safe Renderer

Kimmo Ollila

›What is Functional Safety?
›Safety Standards
›Creating a Certified System with Qt
›Qt Safe Renderer
›Summary

10/15/18 © The Qt Company2

Presentation Outline

› Protect people from getting
hurt

› Active systems: detect &
prevent

› Determined considering the
system as a whole

› Measured by Safety Integrity
Level (SIL, ASIL in Automotive)

› Required level determined
based on likelihood of injury or
death

10/15/18 © The Qt Company3

What is Functional Safety?

› Main standard of functional
safety is IEC 61508

› Examples of industry specific
standards

› Automotive: ISO 26262

› Medical Device Software: IEC 62304

› Railway software: EN 50128

› Avionics software: DO-178B

› Machine control: IEC 62061

› Agricultural machines: ISO 25119

› Nuclear: IEC 61513

10/15/18 © The Qt Company4

Examples of Safety Standards

IEC 50156
Furnaces

IEC 61508

IEC 61800-5-2
Electr. Drives

IEC 61513
Nuclear Sector

EN 50128
Railway

applications

ISO 26262
Automotive

IEC 62061
Machinery

IEC 61511
Process
Industry

IEC 62304
Medical
Devices

Creating a Certified System
with Qt

10/15/18 © The Qt Company5

› Complete system needs to be certified

› Using pre-certified tools and components helps achieve certification for new system

› Separation of safety critical functionality from other functionality

› Suitable means and level of separation depending upon the required SIL/ASIL level

› Qt Safe Renderer as safety critical process, Main UI with Qt Quick as regular process

10/15/18 © The Qt Company6

Creating a Certified System with Qt

With separation, Qt can be used in a system
requiring certification without changing the

Qt libraries.
Safety critical UI rendered with Qt Safe

Renderer.

› Real-Time Operating System (RTOS) to
separate Safety Critical and other processes

› Certified RTOS and toolchain saves time and
effort in system level certification

› Certification requirements applied for the
safety critical parts

› UI elements can be separated using HW layers
or by the RTOS compositor

› In some designs, a safety critical UI may not
be necessary at all, or can be arranged using a
separate display or a warning light

10/15/18 © The Qt Company7

Certified RTOS for Separation

Main UI (Qt Quick)

Qt

Safe UI

RTOS (Safety Critical)

Electronics

Qt
Safe

Renderer

› A Hypervisor to run separate OS for safety
critical and other functionality

› Safety critical functionality on a certified RTOS

› Other functionality for example on embedded
Linux

› Operating systems can share resources and
data as long as the separation guarantees
integrity of the safety critical software

› Safety critical functionality can be assigned to
a dedicated CPU core

› Shared resources controlled by hypervisor
(e.g. GPU)

10/15/18 © The Qt Company8

Hypervisor for Separation

Main UI (Qt Quick)

Qt

OS (e.g. Linux)

Type 1 Hypervisor (SC)

Electronics

Safe UI

RTOS
(SC)

Qt
Safe

Renderer

› A Hypervisor to separate OS domains, as well as
safety critical and other functionality

› Safety critical functionality on a certified RTOS

› Other functionality for example on embedded
Linux

› Two different regular Qt UIs + Safety Critical UI
› UI - A running on a regular OS, e.g. Linux

› UI - B running on a safety critical RTOS

› Qt Safe Renderer for safety critical UI functionality

› Otherwise similar as previously shown
hypervisor architecture

10/15/18 © The Qt Company9

Hypervisor for Separation – with Multiple Domains

UI - A

Qt

OS

Type 1 Hypervisor (SC)

Electronics

Safe UI

RTOS (SC)

Qt
Safe

Renderer

UI - B

Qt

› Separate processors or a single SoC with separate
CPUs to run different OS for safety critical and other
functionality

› Similar to hypervisor, but separation done directly
with physical hardware

› Safety critical functionality can run on a simple
RTOS

› A microcontroller CPU may be enough for safety
critical functionality

› Other functionality can run for example on Linux OS

› Operating systems can share resources and data as
long as the separation guarantees integrity of the
safety critical software

10/15/18 © The Qt Company10

Separate Processors

Main UI (Qt Quick)

Qt

OS (e.g. Linux)

Electronics

CPU A CPU B

Safe UI

RTOS
(SC)

Qt
Safe

Renderer

Qt Safe Renderer
› Certification for: IEC 61508, ISO 26262, EN 50128 and ISO 62304

10/15/18 © The Qt Company11

1. Qt Safe Renderer SW consists of
› Qt Creator plug-in

› Layout generator

› Runtime component

2. Common tool chain for designing both
safe and non-safe UI

3. Safety Manual and Certification Artifacts

10/15/18 © The Qt Company12

Qt Safe Renderer – Product Overview

› Two certified components:
› Development tooling with visual designer

› Rendering component for safety critical UI

› Integration to RTOS:
› QNX 7.0 or later

› INTEGRITY 11.4.4 or later

› Examples of supported HW:
› NXP i.MX6, Renesas R-Car H3, Qualcomm

Snapdragon 820, NVIDIA Tegra X1, …

10/15/18 © The Qt Company13

Qt Safe Renderer
 – Overview

› Easy to define safety critical parts with Qt
UI design tools

› Flexibility in UI design without need to
modify safety critical SW components

› Integration to Qt Quick Designer visual UI
creation tooling in Qt Creator IDE

› Drag and drop safety critical items to UI

› Full set of ISO standard icons included

› No code changes needed due to new UI
design

› Run safety critical UI in host during
development and deploy to target
hardware from Creator IDE

10/15/18 © The Qt Company14

Qt Safe Renderer Tooling –
Convenience for Safety Critical UI Creation

SafeImage {

 id: safeImage1

 objectName: "safeImage1"

 source: "indicator1.png"

 width: 64

 height: 64

 x: 321

 y: 123

 }

10/15/18 Presentation name / Author15

Three “Safe” QML Items

SafePicture {

 id: iconCoolant

 objectName: "iconCoolant"

 width: 30

 height: 30

 color: "#e41e25"

 source: "qrc:/iso-
icons/iso_grs_7000_4_2426.d
at"

 }

SafeText {

 id: safeText

 x: 256

 y: 8

 text: "Safe text.."

 font.pointSize: 12

 }

› Complete UI designed with Qt QML and tooling, including the Safety critical UI
› Tooling automatically separates the Safety critical UI parts from the other UI
› Safety critical UI rendered by Qt Safe Renderer

10/15/18 © The Qt Company16

Certified Separation of Safety Critical UI

› Rendering of safety critical UI by
Qt Safe Renderer

› Bitmaps

› Text baked into bitmaps

› Fully MISRA C++ 2008 compliant

› Safe UI created with tooling – no
changes to safety critical code

› Independent from Main UI

› Can react to Main UI failures and
restart Main UI

10/15/18 © The Qt Company17

Qt Safe Renderer Runtime –
Renderer for Safety Critical UI

› Qt Safe Renderer runs as a safety
critical process

› No dependency to Main UI

› Process separation by RTOS

› Safety critical UI drawn to a separate
(topmost) HW graphics layer

› Other processes can not overdraw it

› Qt Safe Renderer listens to heartbeat
from Main UI and controls Main UI

› UI configuration information generated
with build-time tooling

› No changes to safety critical source code due
to changes in UI design
10/15/18 © The Qt Company18

Qt Safe Renderer – Runtime Architecture
Main UI

Qt

Safe UI

RTOS (Safety Critical)

Electronics

Qt
Safe

Renderer

 U
I
Pa

ra
m

e
te

rs

LayerLayer

Display

Heartbeat

Control

10/15/18 © The Qt Company19

10/15/18 © The Qt Company20

Qt Safe Renderer – Leveraging the Graphics HW
Layers

› Communications between Qt
Safe Renderer and Main UI
minimized

› No dependency to each other

› Qt Safe Renderer can control Main
UI

› Qt Safe Renderer draws pre-
defined bitmaps to screen
based on system events

› Fully independent operation even
in case of failure in Main UI

10/15/18 © The Qt Company21

Qt Safe Renderer – Typical Operation

› Qt Safe Renderer can listen to a heartbeat from Main UI

› In case of Main UI failure Qt Safe Renderer can restart the Main UI

10/15/18 © The Qt Company22

Qt Safe Renderer – Main UI Recovery

Summary

10/15/18 © The Qt Company23

› Objective of Functional Safety: avoid unacceptable risk of injury or damage to the
health of people

› Multiple industry specific standards and local legislation set the framework

› Complete final product is certified
› Use Qt Safe Renderer for safety critical UI

› Using pre-certified RTOS and hypervisor is beneficial

› Qt is well suited as UI and application technology to create a certified system
› Safety critical functionality needs to be adequately separated

› Certified systems for multiple different industries have been created with Qt
› Qt Safe Renderer provides certified easy-to-use tooling and renderer

› Certification of Qt Safe Renderer: IEC 61508, ISO 26262, EN 50128 and ISO 62304

10/15/18 © The Qt Company24

Summary

Thank You

10/15/18 © The Qt Company25

kimmo.ollila@qt.io

	Slide 1
	Presentation Outline
	What is Functional Safety?
	Examples of Safety Standards
	Slide 5
	Creating a Certified System with Qt
	Certified RTOS for Separation
	Hypervisor for Separation
	Hypervisor for Separation – with Multiple Domains
	Separate Processors
	Slide 11
	Qt Safe Renderer – Product Overview
	Qt Safe Renderer – Overview
	Slide 14
	Three “Safe” QML Items
	Certified Separation of Safety Critical UI
	Qt Safe Renderer Runtime – Renderer for Safety Critical UI
	Qt Safe Renderer – Runtime Architecture
	Slide 19
	Qt Safe Renderer – Leveraging the Graphics HW Layers
	Qt Safe Renderer – Typical Operation
	Qt Safe Renderer – Main UI Recovery
	Slide 23
	Summary
	Slide 25

