
Model

QML File

Meta System Rewriter 
View

Formeditor 
View

Navigator 
View

Propertyeditor 
View

Node Instance 
View

(objects in 
QML2PUPPET)

Viewmanager

Documentmanager

Doc changes, 
save, undo, redo, 
copy, paste etc. QML Designer 

Plugin

Actionmanager

QML2PUPPET

3D Node Editor View

QmlObjectNode

ModelNode

3D Editor Plugin

adds 3d node edit view

Actions on 3D Nodes

3D 
Select 
Tool

Timeline View

3D 
Move 
Tool

3D 
Rotate 
Tool

View 
Model

View 
Model

View 
Model

View 
Model

View 
Model

View 
Model

QmlModelNodeFacade
-m_modelNode

Model is at the core 
of everything. It is not 

"intelligent" 
intentionally. Basic 

QML DOM in 
memory. Nodes, 

children, with 
properties.

Abstract view, to get callbacks 
when model changes. Subclasses 

of the view are used to interact 
with the model. This locks who 
does what. You have to be view 

and we can lock which view does 
what. Another rule, when you react 
to callback. You are not allowed to 

change model from a callback. 
View is most of the time, what is 
called model view. It takes huge 

model and translates the model to 
view specific data structure.

Graphics scene 
and layout of the 

items.

Rewriter creates 
QML code and 

reads it. Bridges 
QML code to 

model. Unit tested 
a lot.

If you want to get 
data of instances 

you use QML 
Object node.

Without ANY QML 
semantics. Lowest level that 

HAS TO work. If model 
doesn't work, then there is 

bug in the how the in 
memory data struct works. If 

model doesn't work, then 
there is bug in the how the in 

memory data struct works

Meta system is very close to the 
rewriter. Try to keep meta system 

separete. It's a huge proxy on QML 
code model. That simplifies the data 

in the QML. Types are not normalised 
in the model.  So this handles that.

QQuickItem has C++ name 
QQuickItem, in model has two 

names. Both are types that can come 
up in the code model. The glue code 
on top cleans up. This ensures the 

mess only stays in the meta system.
Model recreates 

the QML 
semantics, which 
can have bugs...

Basic QML syntax 
implemented here (not 

even Qt Quick yet). All of 
Qt Quick 3D kind of works. 
We don't know they have 

mesh or material or matrix. 
It breaks couple of things. 
They are forced to show 

as visible items in the 
navigator.

Integration to rest of 
Qt Creator

Integrating all the 
views.

Created to easily 
define actions that 

can be shown in the 
menu and toolbar 

etc.

Qt Creator has it's own action 
manager. Qt Creator has it's 

actions spread over it's 
plugins. There is no 

architecture there. So we 
disable plugins, e.g. QML 

code model depends on C++ 
code model.

2D editing has two scene graphs. We synch the 
scene graph. As long as you only move items, it 
works pretty well. If you move item, we move it in 
the Qt Creator scene graph. You feel the lag in 

two cases. If there is side effect when you 
something that affects something else. E.g. 

anchors. If you move item A, then item B that is 
anchored to item A moves with lag.

If you anchor item with fill. If you ask instance 
"what is your size" as you'd have to wait for 

everyhitng to go through the puppet and things to 
settle. You do action, the results show up in 20 

ms.


	Qt Creator Arch - Overview 3D
	Overview 3D


