############################################################################# ## ## Copyright (C) 2019 The Qt Company Ltd. ## Contact: https://www.qt.io/licensing/ ## ## This file is part of Qt for Python. ## ## $QT_BEGIN_LICENSE:LGPL$ ## Commercial License Usage ## Licensees holding valid commercial Qt licenses may use this file in ## accordance with the commercial license agreement provided with the ## Software or, alternatively, in accordance with the terms contained in ## a written agreement between you and The Qt Company. For licensing terms ## and conditions see https://www.qt.io/terms-conditions. For further ## information use the contact form at https://www.qt.io/contact-us. ## ## GNU Lesser General Public License Usage ## Alternatively, this file may be used under the terms of the GNU Lesser ## General Public License version 3 as published by the Free Software ## Foundation and appearing in the file LICENSE.LGPL3 included in the ## packaging of this file. Please review the following information to ## ensure the GNU Lesser General Public License version 3 requirements ## will be met: https://www.gnu.org/licenses/lgpl-3.0.html. ## ## GNU General Public License Usage ## Alternatively, this file may be used under the terms of the GNU ## General Public License version 2.0 or (at your option) the GNU General ## Public license version 3 or any later version approved by the KDE Free ## Qt Foundation. The licenses are as published by the Free Software ## Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 ## included in the packaging of this file. Please review the following ## information to ensure the GNU General Public License requirements will ## be met: https://www.gnu.org/licenses/gpl-2.0.html and ## https://www.gnu.org/licenses/gpl-3.0.html. ## ## $QT_END_LICENSE$ ## ############################################################################# from __future__ import print_function, absolute_import import sys import re import warnings import types import keyword import functools from shibokensupport.signature.mapping import (type_map, update_mapping, namespace, typing, _NotCalled, ResultVariable, ArrayLikeVariable) from shibokensupport.signature.lib.tool import (SimpleNamespace, build_brace_pattern) _DEBUG = False LIST_KEYWORDS = False """ parser.py This module parses the signature text and creates properties for the signature objects. PySide has a new function 'CppGenerator::writeSignatureInfo()' that extracts the gathered information about the function arguments and defaults as good as it can. But what PySide generates is still very C-ish and has many constants that Python doesn't understand. The function 'try_to_guess()' below understands a lot of PySide's peculiar way to assume local context. If it is able to do the guess, then the result is inserted into the dict, so the search happens not again. For everything that is not covered by these automatic guesses, we provide an entry in 'type_map' that resolves it. In effect, 'type_map' maps text to real Python objects. """ def dprint(*args, **kw): if _DEBUG: import pprint for arg in args: pprint.pprint(arg) sys.stdout.flush() _cache = {} def _parse_arglist(argstr): # The following is a split re. The string is broken into pieces which are # between the recognized strings. Because the re has groups, both the # strings and the separators are returned, where the strings are not # interesting at all: They are just the commata. key = "_parse_arglist" if key not in _cache: regex = build_brace_pattern(level=3, separators=",") _cache[key] = re.compile(regex, flags=re.VERBOSE) split = _cache[key].split # Note: this list is interspersed with "," and surrounded by "" return [x.strip() for x in split(argstr) if x.strip() not in ("", ",")] def _parse_line(line): line_re = r""" ((?P ([0-9]+)) : )? # the optional multi-index (?P \w+(\.\w+)*) # the function name \( (?P .*?) \) # the argument list ( -> (?P .*) )? # the optional return type $ """ ret = SimpleNamespace(**re.match(line_re, line, re.VERBOSE).groupdict()) # PYSIDE-1095: Handle arbitrary default expressions argstr = ret.arglist.replace("->", ".deref.") arglist = _parse_arglist(argstr) args = [] for arg in arglist: name, ann = arg.split(":") if name in keyword.kwlist: if LIST_KEYWORDS: print("KEYWORD", ret) name = name + "_" if "=" in ann: ann, default = ann.split("=", 1) tup = name, ann, default else: tup = name, ann args.append(tup) ret.arglist = args multi = ret.multi if multi is not None: ret.multi = int(multi) funcname = ret.funcname parts = funcname.split(".") if parts[-1] in keyword.kwlist: ret.funcname = funcname + "_" return vars(ret) def make_good_value(thing, valtype): try: if thing.endswith("()"): thing = 'Default("{}")'.format(thing[:-2]) else: ret = eval(thing, namespace) if valtype and repr(ret).startswith("<"): thing = 'Instance("{}")'.format(thing) return eval(thing, namespace) except Exception: pass def try_to_guess(thing, valtype): if "." not in thing and "(" not in thing: text = "{}.{}".format(valtype, thing) ret = make_good_value(text, valtype) if ret is not None: return ret typewords = valtype.split(".") valwords = thing.split(".") braceless = valwords[0] # Yes, not -1. Relevant is the overlapped word. if "(" in braceless: braceless = braceless[:braceless.index("(")] for idx, w in enumerate(typewords): if w == braceless: text = ".".join(typewords[:idx] + valwords) ret = make_good_value(text, valtype) if ret is not None: return ret return None def _resolve_value(thing, valtype, line, doThrow=False): if thing in ("0", "None") and valtype: if valtype.startswith("PySide2.") or valtype.startswith("typing."): return None map = type_map[valtype] # typing.Any: '_SpecialForm' object has no attribute '__name__' name = map.__name__ if hasattr(map, "__name__") else str(map) thing = "zero({})".format(name) if thing in type_map: return type_map[thing] res = make_good_value(thing, valtype) if res is not None: type_map[thing] = res return res res = try_to_guess(thing, valtype) if valtype else None if res is not None: type_map[thing] = res return res if doThrow: raise RuntimeError("unrecognized type {!r} line: {!r}".format(thing, line)) warnings.warn("""pyside_type_init: UNRECOGNIZED: {!r} OFFENDING LINE: {!r} """.format(thing, line), RuntimeWarning) return thing def _resolve_arraytype(thing, line): search = re.search(r"\[(\d*)\]$", thing) thing = thing[:search.start()] if thing.endswith("]"): thing = _resolve_arraytype(thing, line) if search.group(1): # concrete array, use a tuple nelem = int(search.group(1)) thing = ", ".join([thing] * nelem) thing = "Tuple[" + thing + "]" else: thing = "QList[" + thing + "]" return thing def to_string(thing): if isinstance(thing, str): return thing if hasattr(thing, "__name__"): dot = "." in str(thing) return thing.__module__ + "." + thing.__name__ if dot else thing.__name__ # Note: This captures things from the typing module: return str(thing) matrix_pattern = "PySide2.QtGui.QGenericMatrix" def handle_matrix(arg): n, m, typstr = tuple(map(lambda x:x.strip(), arg.split(","))) assert typstr == "float" result = "PySide2.QtGui.QMatrix{n}x{m}".format(**locals()) return eval(result, namespace) debugging_aid = """ from inspect import currentframe def lno(level): lineno = currentframe().f_back.f_lineno spaces = level * " " return "{lineno}{spaces}".format(**locals()) """ def _resolve_type(thing, line, level, var_handler): # Capture total replacements, first. Happens in # "PySide2.QtCore.QCborStreamReader.StringResult[PySide2.QtCore.QByteArray]" if thing in type_map: return type_map[thing] # Now the nested structures are handled. try: return _resolve_value(thing, None, line, doThrow=True) except: if "[" in thing: # handle primitive arrays if re.search(r"\[\d*\]$", thing): thing = _resolve_arraytype(thing, line) # Handle a container return type. (see PYSIDE-921 in cppgenerator.cpp) contr, thing = re.match(r"(.*?)\[(.*?)\]$", thing).groups() # Special case: Handle the generic matrices. if contr == matrix_pattern: return handle_matrix(thing) contr = var_handler(_resolve_type(contr, line, level+1, var_handler)) if isinstance(contr, _NotCalled): raise SystemError("Container types must exist:", repr(contr)) contr = to_string(contr) pieces = [] for part in _parse_arglist(thing): part = var_handler(_resolve_type(part, line, level+1, var_handler)) if isinstance(part, _NotCalled): # fix the tag (i.e. "Missing") by repr part = repr(part) pieces.append(to_string(part)) thing = ", ".join(pieces) result = "{contr}[{thing}]".format(**locals()) return eval(result, namespace) return thing def _handle_generic(obj, repl): """ Assign repl if obj is an ArrayLikeVariable This is a neat trick. Example: obj repl result ---------------------- -------- --------- ArrayLikeVariable List List ArrayLikeVariable(str) List List[str] ArrayLikeVariable Sequence Sequence ArrayLikeVariable(str) Sequence Sequence[str] """ if isinstance(obj, ArrayLikeVariable): return repl[obj.type] if isinstance(obj, type) and issubclass(obj, ArrayLikeVariable): # was "if obj is ArrayLikeVariable" return repl return obj def handle_argvar(obj): """ Decide how array-like variables are resolved in arguments Currently, the best approximation is types.Sequence. We want to change that to types.Iterable in the near future. """ return _handle_generic(obj, typing.Sequence) def handle_retvar(obj): """ Decide how array-like variables are resolved in results This will probably stay typing.List forever. """ return _handle_generic(obj, typing.List) def calculate_props(line): parsed = SimpleNamespace(**_parse_line(line.strip())) arglist = parsed.arglist annotations = {} _defaults = [] for idx, tup in enumerate(arglist): name, ann = tup[:2] if ann == "...": name = "*args" if name.startswith("arg_") else "*" + name # copy the pathed fields back ann = 'nullptr' # maps to None tup = name, ann arglist[idx] = tup annotations[name] = _resolve_type(ann, line, 0, handle_argvar) if len(tup) == 3: default = _resolve_value(tup[2], ann, line) _defaults.append(default) defaults = tuple(_defaults) returntype = parsed.returntype if returntype is not None: annotations["return"] = _resolve_type(returntype, line, 0, handle_retvar) props = SimpleNamespace() props.defaults = defaults props.kwdefaults = {} props.annotations = annotations props.varnames = varnames = tuple(tup[0] for tup in arglist) funcname = parsed.funcname props.fullname = funcname shortname = funcname[funcname.rindex(".")+1:] props.name = shortname props.multi = parsed.multi fix_variables(props, line) return vars(props) def fix_variables(props, line): annos = props.annotations if not any(isinstance(ann, (ResultVariable, ArrayLikeVariable)) for ann in annos.values()): return retvar = annos.get("return", None) if retvar and isinstance(retvar, (ResultVariable, ArrayLikeVariable)): # Special case: a ResultVariable which is the result will always be an array! annos["return"] = retvar = typing.List[retvar.type] fullname = props.fullname varnames = list(props.varnames) defaults = list(props.defaults) diff = len(varnames) - len(defaults) safe_annos = annos.copy() retvars = [retvar] if retvar else [] deletions = [] for idx, name in enumerate(varnames): ann = safe_annos[name] if isinstance(ann, ArrayLikeVariable): ann = typing.Sequence[ann.type] annos[name] = ann if not isinstance(ann, ResultVariable): continue # We move the variable to the end and remove it. retvars.append(ann.type) deletions.append(idx) del annos[name] for idx in reversed(deletions): # varnames: 0 1 2 3 4 5 6 7 # defaults: 0 1 2 3 4 # diff: 3 del varnames[idx] if idx >= diff: del defaults[idx - diff] else: diff -= 1 if retvars: rvs = [] retvars = list(handle_retvar(rv) if isinstance(rv, ArrayLikeVariable) else rv for rv in retvars) if len(retvars) == 1: returntype = retvars[0] else: typestr = "typing.Tuple[{}]".format(", ".join(map(to_string, retvars))) returntype = eval(typestr, namespace) props.annotations["return"] = returntype props.varnames = tuple(varnames) props.defaults = tuple(defaults) def fixup_multilines(lines): """ Multilines can collapse when certain distinctions between C++ types vanish after mapping to Python. This function fixes this by re-computing multiline-ness. """ res = [] multi_lines = [] for line in lines: multi = re.match(r"([0-9]+):", line) if multi: idx, rest = int(multi.group(1)), line[multi.end():] multi_lines.append(rest) if idx > 0: continue # remove duplicates multi_lines = sorted(set(multi_lines)) # renumber or return a single line nmulti = len(multi_lines) if nmulti > 1: for idx, line in enumerate(multi_lines): res.append("{}:{}".format(nmulti-idx-1, line)) else: res.append(multi_lines[0]) multi_lines = [] else: res.append(line) return res def pyside_type_init(type_key, sig_strings): dprint() dprint("Initialization of type key '{}'".format(type_key)) update_mapping() lines = fixup_multilines(sig_strings) ret = {} multi_props = [] for line in lines: props = calculate_props(line) shortname = props["name"] multi = props["multi"] if multi is None: ret[shortname] = props dprint(props) else: multi_props.append(props) if multi > 0: continue fullname = props.pop("fullname") multi_props = {"multi": multi_props, "fullname": fullname} ret[shortname] = multi_props dprint(multi_props) multi_props = [] return ret # end of file